Well-Posedness for the Two-Dimensional Zakharov-Kuznetsov Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness results for the 3D Zakharov-Kuznetsov equation

We prove the local well-posedness of the three-dimensional Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces Hs(R3), s > 1, as well as in the Besov space B 2 (R 3). The proof is based on a sharp maximal function estimate in time-weighted spaces.

متن کامل

Well-posedness for the 2d Modified Zakharov-kuznetsov Equation

We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.

متن کامل

Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation

We show that the initial value problem associated to the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov equation ut −D α xux + uxyy = uux, (t, x, y) ∈ R , 1 ≤ α ≤ 2, is locally well-posed in the spaces Es, s > 2 α − 3 4 , endowed with the norm ‖f‖Es = ‖〈|ξ| α + μ〉f̂‖L2(R2). As a consequence, we get the global wellposedness in the energy space E1/2 as soon as α > 8 5 . The proof is based ...

متن کامل

The Zakharov-Kuznetsov Equation as a Two-Dimensional Model for Nonlinear Rossby Waves

We derive the Zakharov-Kuznetsov equation for large scale motion from the barotropic quasigeostrophic equation in a weakly nonlinear, long wave approximation. We study the evolution of finite amplitude perturbations of an unstable jet in planetary atmospheres and oceans. We use multiple scale analysis combined with asymptotic matching. The Zakharov-Kuznetsov equation is suggestive that the pert...

متن کامل

A ug 2 00 8 Low regularity global well - posedness for the two - dimensional Zakharov system ∗

The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L-norm of the Schrödinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffilani, Takaoka and Tao. A polynomial growth bound for the solution is also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Funkcialaj Ekvacioj

سال: 2020

ISSN: 0532-8721

DOI: 10.1619/fesi.63.67